Retractile Proof Nets of the Purely Multiplicative and Additive Fragment of Linear Logic
نویسنده
چکیده
Proof nets are a parallel syntax for sequential proofs of linear logic, firstly introduced by Girard in 1987. Here we present and intrinsic (geometrical) characterization of proof nets, that is a correctness criterion (an algorithm) for checking those proof structures which correspond to proofs of the purely multiplicative and additive fragment of linear logic. This criterion is formulated in terms of simple graph rewriting rules and it extends an initial idea of a retraction correctness criterion for proof nets of the purely multiplicative fragment of linear logic presented by Danos in his Thesis in 1990.
منابع مشابه
A Characterization of Hypercoherent Semantic Correctness in Multiplicative Additive Linear Logic
We give a graph theoretical criterion on multiplicative additive linear logic (MALL) cut-free proof structures that exactly characterizes those whose interpretation is a hyperclique in Ehrhard’s hypercoherent spaces. This criterion is strictly weaker than the one given by Hughes and van Glabbeek characterizing proof nets (i.e. desequentialized sequent calculus proofs). We thus also give the fir...
متن کاملConstruction of Retractile Proof Structures
In this work we present a paradigm of focusing proof search based on an incremental construction of retractile (i.e, correct or sequentializable) proof structures of the pure (units free) multiplicative and additive fragment of linear logic. The correctness of proof construction steps (or expansion steps) is ensured by means of a system of graph retraction rules; this graph rewriting system is ...
متن کاملA characterization of MALL hypercoherent semantic correctness
We give a graph theoretical criterion on Multiplicative Additive Linear Logic (MALL) cut-free proof structures that exactly characterizes those whose interpretation is a hyperclique in Ehrhard’s hypercoherent spaces. This criterion is strictly weaker than the one given by Hughes and van Glabbeek characterizing proof nets (i.e. desequentialized sequent calculus proofs). We thus also give the fir...
متن کاملCyclic Multiplicative-Additive Proof Nets of Linear Logic with an Application to Language Parsing
This paper concerns a logical approach to natural language parsing based on proof nets (PNs), i.e. de-sequentialized proofs, of linear logic (LL). It first provides a syntax for proof structures (PSs) of the cyclic multiplicative and additive fragment of linear logic (CyMALL). A PS is an oriented graph, weighted by boolean monomial weights, whose conclusions Γ are endowed with a cyclic order σ....
متن کاملBipolar Proof Nets for MALL
In this work we present a computation paradigm based on a concurrent and incremental construction of proof nets (de-sequentialized or graphical proofs) of the pure multiplicative and additive fragment of Linear Logic, a resources conscious refinement of Classical Logic. Moreover, we set a correspondence between this paradigm and those more pragmatic ones inspired to transactional or distributed...
متن کامل